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Abstract: - This paper presents an optimal design of linear phase digital low pass finite impulse response (FIR) 

filter using Novel Particle Swarm Optimization (NPSO). NPSO is an improved particle swarm optimization 

(PSO) that proposes a new definition for the velocity vector and swarm updating and hence the solution quality 

is improved. The inertia weight has been modified in the PSO to enhance its search capability that leads to a 

higher probability of obtaining the global optimal solution. The key feature of the proposed modified inertia 

weight mechanism is to monitor the weights of particles, which linearly decrease in general applications. In the 

design process, the filter length, pass band and stop band frequencies, feasible pass band and stop band ripple 

sizes are specified. FIR filter design is a multi-modal optimization problem. Evolutionary algorithms like real 

code genetic algorithm (RGA), particle swarm optimization (PSO), and the novel particle swarm optimization 

(NPSO) have been used in this work for the design of linear phase FIR low pass (LP) filter. A comparison of 

simulation results reveals the optimization efficacy of the algorithm over the prevailing optimization techniques 

for the solution of the multimodal, non-differentiable, highly non-linear, and constrained FIR filter design 

problems. 

 

 

Key-Words: - FIR Filter, RGA, PSO, NPSO, Parks and McClellan (PM) Algorithm, Evolutionary Optimization, 

Low Pass Filter 

 

1 Introduction 
Digital Filter is an important part of digital signal 

processing (DSP) system and it usually comes in 

two categories: finite impulse response (FIR) and 

infinite impulse response (IIR). FIR filter is an 

attractive choice because of the ease in design and 

stability. By designing the filter taps to be 

symmetrical about the centre tap position, a FIR 

filter can be guaranteed to have linear phase. Linear 

phase FIR filters are also required when time 

domain features are specified [1-2].  

Traditionally, there are many well known 

methods for FIR design, such as the window 

method, frequency sampling method etc. The 

windowing method simply consists of truncating or 

windowing a theoretically infinite filter impulse 

response by some suitably chosen window function. 

The window method is fast, convenient, robust but 

generally suboptimal. A window is a finite array of 

coefficients selected to satisfy the desirable 

requirements. There are various kinds of window 

functions (Butterworth, Chebyshev, Kaiser, and 

Hamming) available depending on the filter 

specifications to be met like ripples in pass and stop 

band, stop band attenuation and transition width. Its 

major disadvantage is the lack of precise control of 

the critical frequencies such as pass band and stop 

band cut-off frequency and the transition width. 

These values depend on the type of the window and 

the order of the filter. 

Remez Exchange algorithm proposed by Parks 

and McClellan is used for the design of exact linear 

phase weighted Chebyshev FIR filter [3]. Further a 

computer program has been developed for the 

design of FIR digital filter by McClellan et al. [4]. 

The major limitation of this approach is that the 

relative values of the amplitude error in the 

frequency bands are specified by means of the 

weighting functions and not by the deviations 

themselves. The program has to be iterated many 

times in order to meet the filter specifications in 

terms of stop band attenuation, cut-off frequency 

and filter length [5]. 

The objective function for the design of optimal 

digital filters involves accurate control of various 

parameters of frequency spectrum and is thus highly 

non-uniform, non-linear, non-differentiable and 

multimodal in nature. Classical optimization 

methods cannot optimize such objective functions 
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and cannot converge to the global minimum 

solution. Because they have disadvantages such as: 

i) highly sensitive to starting points when the 

number of solution variables and hence the size of 

the solution space increase, ii) frequent convergence 

to local optimum solution or divergence or 

revisiting the same suboptimal solution, iii) 

requirement of continuous and differentiable 

objective cost function (gradient search methods), 

iv) requirement of the piecewise linear cost 

approximation (linear programming), and v) 

problem of convergence and algorithm complexity 

(non-linear programming).  

So, evolutionary optimization methods have been 

implemented for the design of optimal digital filters 

with better control of parameters and the highest 

stop band attenuation. Different heuristics and 

stochastic optimization methods have been 

developed, which have proved themselves quite 

efficient for the design of FIR filter like GA [7-9], 

simulated annealing [10], Tabu Search [11], 

Differential evolution [12] and artificial bee colony 

optimization [13] etc. GA proves itself to be more 

efficient in terms of obtaining local optimum while 

maintaining its moderate computational complexity 

but they are not very successful in determining the 

global minima in terms of convergence speed and 

solution quality [14]. 

In this paper, the benefits of designing the FIR 

filter using an evolutionary technique known as 

Particle Swarm Optimization has been explored. 

The PSO proves itself to be far more efficient than 

the previously discussed techniques in many 

aspects. Particle Swarm Optimization is an 

evolutionary optimization technique developed by 

Eberhart et al. [15]. The merits of PSO lie in its 

simplicity to implement as well as its convergence 

can be controlled via few parameters. Several works 

have already been done in order to explore the 

flexibility of FIR filter design provided by PSO 

[14], [16]. PSO is used for the design of FIR digital 

filters by using LMS and Minimax strategies for 

different populations and number of iterations [16].  

Several modifications of the conventional PSO 

technique have been made to increase its efficiency. 

PSO is used with the differential evolution [17] to 

design optimal filter. The inertial weights and 

acceleration coefficients are the parameters of PSO 

whereas scaling factor and recombination 

probability are the parameters of DE. With the use 

of this method, the optimization algorithm becomes 

insensitive to the parameters of PSO as well as DE. 

The inertial weight concept and the neighbour 

topology of PSO are used with the concept of the 

DE, which avoids the trapping of the solution in 

local minima as well as it speeds up the 

convergence process. Quantum-behaved Particle 

Swarm Optimization (QPSO) which was proposed 

by Sun et al. [18], is a novel algorithm based on the 

PSO and quantum model. In this concept each 

particle has quantum behaviour. In quantum 

mechanics, a particle has a wave function instead of 

having position and velocity. By using this concept, 

one can find the positions and velocities of the 

particles of search space exactly so the algorithm 

gets modified accordingly. QPSO is used for the 

design of FIR filters in [19]. Quantum infused PSO 

is also utilized for the design of digital filters [20]. 

The global best is selected by comparing the global 

best obtained from the conventional PSO and the 

offspring obtained from the QPSO. DEPSO and 

PSO-QI have been used for FIR filter design 

problem in [21]. More recently, craziness based 

PSO (CRPSO) has been applied for FIR filter design 

problem in [22]. 

Most of the above algorithms show the problems 

of fixing algorithm’s control parameters, premature 

convergence, stagnation and revisiting of the same 

solution over and again [23], [24]. In order to 

overcome these problems, in this paper, a novel 

particle swarm optimization technique [25] and a 

novel fitness function are employed for the FIR low 

pass (LP) filter design. 

The rest of the paper is arranged as follows. In 

section 2, the FIR LP filter design problem is 

formulated. Section 3 discusses the algorithms of 

RGA, conventional PSO and the NPSO algorithm. 

Section 4 describes the simulation results obtained 

for FIR LP filter using PM algorithm, RGA, PSO 

and the proposed NPSO approach. Finally, section 5 

concludes the paper.  

 

2 Problem Formulation 
The main advantage of the FIR filter structure is that 

it can achieve exactly linear-phase frequency 

responses. That is why almost all design methods 

described in the literature deal with filters with this 

property. Since the phase response of linear-phase 

filters is known, the design procedures are reduced 

to real-valued approximation problems, where the 

coefficients have to be optimized with respect to the 

magnitude response only. 

A digital FIR filter is characterized by, 

( ) ( ) n
N

n

znhzH
−

=

∑=
0

, n=0, 1,…, N       (1) 
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where N is the order of the filter which has (N+1) 

number of filter’s impulse response coefficients, 

h(n). The values of h(n) will determine the type of 

the filter, e.g., low pass, high pass, band pass etc. 

The values of h(n) are to be determined in the 

design process and N represents the order of the 

polynomial function. This paper presents the even 

order FIR LP filter design with h(n) as positive even 

symmetric. Because the h(n) coefficients are 

symmetrical, the dimension of the problem is 

halved. Thus, (N/2+1) number of h(n) coefficients 

are actually optimized, which are finally 

concatenated to find the required (N+1) number of 

filter coefficients. An ideal filter has a magnitude of 

one in the pass band and a magnitude of zero in the 

stop band. Error fitness function is formed by the 

errors between the frequency responses of the ideal 

filter and the designed approximate filter. In each 

iteration of the optimization algorithm, error fitness 

values of particle vectors are calculated and used for 

updating the particle vectors with new coefficients 

h(n). The final particle vector obtained after a 

certain number of iterations or after the error fitness 

is below a certain limit is considered to be the 

optimal result, yielding an optimal filter. Various 

filter parameters which are responsible for the 

optimal filter design are stop band and pass band 

normalized frequencies ( )
ps ωω , , pass band and stop 

band ripples ( pδ and sδ ), stop band attenuation and 

transition width. These parameters are decided by 

the filter coefficients. Several scholars have 

investigated and developed algorithms in which N, 

δp, and δs are fixed while the remaining parameters 

are optimized. Other algorithms were originally 

developed by Parks and McClellan (PM) [3] in 

which N, pω , sω , and the ratio pδ / sδ are fixed.  

In this paper, evolutionary optimization algorithms 

like RGA, conventional PSO and NPSO are 

individually applied to obtain the actual designed 

filter response as close as possible to the ideal 

response.  

Now for (1), the particle i.e. the coefficient vector 

{h0, h1,…, hN}, which is optimized, is represented in 

(N/2+1) dimension instead of (N+1) dimension.  

The frequency response of the FIR digital filter can 

be calculated as, 

( ) ( ) nj
N

n

j kk enheH
ωω −

=

∑=
0

;       (2) 

where N

k

k

π
ω

2
= ; ( )kj

eH
ω

 is the Fourier transform 

complex vector. This is the FIR filter’s frequency 

response. The frequency is sampled in [0, π] with N 

points. Different kinds of error fitness functions 

have been used in different literatures. An error 

function given by (3) is the approximate error used 

in PM algorithm for filter design [3].  

( ) ( ) ( ) ( )[ ]ωωωω j

i

j

d eHeHGE −=       (3) 

where ( )ωj
d eH  is the frequency response of the 

designed approximate filter; ( )ωji eH  is the 

frequency response of the ideal filter; ( )ωG  is the 

weighting function used to provide different weights 

for the approximate errors in different frequency 

bands. For ideal LP filter, ( )ωj
i eH  is given as,  

( )
otherwise    0              

;0for        1

=

≤≤= c

j

i eH ωωω

                           (4) 

where 
cω  is the cut-off frequency. The major 

drawback of PM algorithm is that the ratio of 

pδ / sδ  is fixed. To improve the flexibility in the 

error function to be minimized, so that the desired 

level of pδ  and sδ  may be specified, the error 

function given in (5) has been considered as fitness 

function in many literatures [14] [21].  The error 

fitness to be minimized using the evolutionary 

algorithms, is defined as: 

( )( ) ( )( )sp EEJ
sp

δωδω
ωωωω

−+−=
≥≤

maxmax1
         (5) 

where pδ and sδ  are the ripples in the pass band and 

stop band, respectively, and pω  and sω are pass 

band and stop band normalized cut-off frequencies, 

respectively. Since the coefficients of the linear 

phase positive symmetric even order filter are 

matched, the dimension of the problem is halved. 

This greatly reduces the computational burdens of 

the algorithms. 

In this paper, a novel error fitness function given by 

(6) has been adopted in order to achieve higher stop 

band attenuation and to have better control on the 

transition width. By using (6), it is found that the 

proposed filter deign approach results in 

considerable improvement over the PM and other 

optimization techniques.  

( )( )[ ] ( )( )[ ]∑∑ −+−−= sdpd HabsHabsabsJ δωδω
 

2 1  (6) 

For the first term of (6), ∈ω pass band including a 

portion of the transition band and for the second 

term of (6), ∈ω stop band including the rest portion 

of the transition band. The portions of the transition 

band chosen depend on pass band edge and stop 

band edge frequencies. 

The error fitness function given in (6) represents the 

generalized fitness function to be minimized using 

the evolutionary algorithms RGA, conventional 

PSO, and the proposed NPSO individually. Each 

algorithm tries to minimize this error fitness 
2J  and 
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thus optimizes the filter performance. Unlike other 

error fitness functions which consider only the 

maximum errors, 
2J  involves summation of all 

absolute errors for the whole frequency band, and 

hence, minimization of 
2J  yields much higher stop 

band attenuation and lesser stop band ripples. 

Transition width is also kept reduced. Since the 

coefficients of the linear phase filter are matched, 

the dimension of the problem is halved. This greatly 

reduces the computational burdens of the 

algorithms, applied to the optimal design of linear 

phase positive even symmetrical FIR filters. 

 

3 Optimization Techniques Employed 

 
3.1 Real Coded Genetic Algorithm (RGA) 

 
Standard genetic algorithm (also known as real 

coded GA) is mainly a probabilistic search 

technique, based on the principles of natural 

selection and evolution. At each generation it 

maintains a population of individuals where each 

individual is a coded form of a possible solution of 

the problem at hand called chromosome. 

Chromosomes are constructed over some particular 

alphabet, e.g., the binary alphabet {0, 1}, so that 

chromosomes’ values are uniquely mapped onto the 

real decision variable domain. Each chromosome is 

evaluated by a function known as fitness function, 

which is usually the fitness function or the objective 

function of the corresponding optimization problem.  

The basic steps of RGA as implemented for the 

optimization of h(n) coefficients are [26]: 

• Initialization of real chromosome strings h(n) of 

np population, each consisting of a set of h(n) 

coefficients. Size of the set depends on the 

number of coefficients in a particular filter 

design.   

• Decoding of strings and evaluation of error 

fitness value of each string. 

• Selection of elite strings in order of increasing 

error fitness values from the minimum value. 

• Copying of the elite strings over the non-

selected strings. 

• Crossover and mutation to generate off-springs. 

• Genetic cycle updating and repeat from the step 

of evaluation error fitness value of each string. 

• The iteration stops when the maximum number 

of genetic cycles is reached. The grand 

minimum error fitness value and its 

corresponding chromosome string or the desired 

optimal solution vector is finally obtained. 

 

3.2 Conventional Particle Swarm 

Optimization (PSO) 
PSO is a flexible, robust population-based stochastic 

search / optimization technique with implicit 

parallelism, which can easily handle with non-

differential objective functions, unlike traditional 

optimization methods. PSO is less susceptible to 

getting trapped on local optima unlike GA, 

Simulated Annealing etc. Eberhart et al. [15] 

developed PSO concept similar to the behaviour of a 

swarm of birds. PSO is developed through 

simulation of bird flocking in multi-dimensional 

space. Bird flocking optimizes a certain objective 

function. Each particle vector (bird) knows its best 

value so far (pbest). This information corresponds to 

personal experiences of each particle vector. 

Moreover, each particle vector h(n) knows the best 

value so far in the group (gbest) among pbests. 

Namely, each particle tries to modify its position 

using the following information: 

• The distance between the current position and the 

pbest. 

• The distance between the current position and the 

gbest. 

Similar to GA, in PSO techniques also, real-coded 

particle vectors of population np are assumed. Each 

particle vector consists of components or sub-strings 

as required number of normalized filter coefficients, 

depending on the order of the filter to be designed.  

Mathematically, velocities of the particle vectors are 

modified according to the following equation [15]: 

 

( ) ( )

( )

1

1 1

2 2

 
k k k k

i i i i

k k

i

V w V C rand pbest X

C rand gbest X

+
= × + × × −

+ × × −
   (7) 

where k

i
V  is the velocity of i

th
 particle vector at k

th 

iteration; w is the weighting function; 
1

C and 
2

C are 

the positive weighting factors; 
1

rand  and 
2

rand  are 

the random numbers between 0 and 1; k
iX  is the 

current position of i
th
 particle vector h(n) at k

th
 

iteration; 
k

ipbest  is the personal best of the i
th
 

particle at the k
th
 iteration; 

kgbest  is the group best 

of the group at the k
th
 iteration. The searching point 

in the solution space may be modified by (8). 

   ( ) ( )1 1k kk

i i iX X V
+ +
= +         (8) 

The first term of (7) is the previous velocity of the 

particle vector. The second and third terms are used 

to change the velocity of the particle vector. 

Without the second and third terms, the particle 

vector will keep on ‘‘flying’’ in the same direction 

until it hits the boundary. Namely, it corresponds to 

a kind of inertia represented by the inertia constant, 

w  and tries to explore new areas. The steps of 
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conventional PSO as employed for FIR LP filter 

design is given in Table 1. 

Table 1. Steps of PSO 

Step 1: Initialization: Population (swarm size) of 

particle vectors, nP=25; maximum iteration 

cycles=350; number of filter coefficients in each 

particle vector are h(n); filter order, nvar=20; C1, C2 

=2.05; minimum and maximum values of filter 

coefficients, hmin=-1,  hmax= 1; number of samples 

= 128;   1.0=pδ , 01.0=sδ ; initialization of the 

velocities of all the particle vectors.  

Step 2: Generate initial particle vectors of filter 

coefficients (nvar/2 +1) randomly with limits; 

Computation of initial error fitness values of the 

total population, nP from (6). 

Step 3: Compare the fitness of each particle vector 

with each pbest. If the current solution is better than 

its pbest, then replace its hpbest by the current 

solution.  

Step 4: Compare the fitness of each particle vector 

with each gbest. If the fitness of any particle vector 

is better than its gbest, then replace its hgbest. 

Step 5: Update the velocity and position of all 

particle vectors according to equation (7) and (8), 

respectively.   

Step 6: Repeat steps 2-5 until the maximum iteration 

cycles or the convergence of minimum error fitness 

values are met; finally, hgbest is the particle vector 

of optimal filter coefficients (nvar/2 +1); Form 

complete (nvar+1) coefficients by copying (because 

the filter has linear phase) before getting the optimal 

frequency spectrum. 

 

3.3 Novel Particle Swarm Optimization 

(NPSO) 
The drawback of the conventional PSO used for the 

generation of optimal coefficients of filter design 

problem is that it results in sub-optimality problem. 

In general, the initial solutions are usually far from 

the global optimum and hence the larger inertia 

weight w may be proved to be beneficial [25]. Large 

inertia weight enables the PSO to explore globally 

and small inertia weight enables the PSO to explore 

locally. This inertia weight w plays the important 

role of balancing the global and local exploration 

abilities. The value of w for all particles will 

decrease at the same time as the iteration number 

increases and is calculated using the following 

expression, 

    max max min
max

( )
iter

w w w w
iter

= − − × ;                 (9) 

where, maxw and minw are the initial and final weight, 

respectively. The standard PSO has oscillatory 

problem and is easy to be trapped in local optima if 

a promising area where the global optimum resides 

is not identified at the end of the optimization 

process. The further development of conventional 

PSO is used to improve the possibility of exploring 

the search space where the global optimal solution 

exists. A slightly different approach further provides 

a well-balanced mechanism between global and 

local exploration abilities. The proposed weighting 

function is defined as follows: 

( ) ( )

( )

,

max max min ,

1

,

,   if 0

                                         if 0

k

iter qik k k k

qi qi i gbest qi

k k k k k

qi qi qi i gbest qi

Z
w w w w v x x

Z

w w v x x−

= − − × × − >

= × − <

(10) 

where q=1, 2, … np; i=1, 2,…N. 
k

qiw  is the element 

inertia weight i of particle q in iteration k. From 

(10), if 
k

qiv and ( )k

qi

k

gbesti xx −,  move in the same 

direction, the value of 
k

qiw  employed will be linearly 

decreasing to prevent the particles from flying past 

the target position during the flight. Otherwise, the 

value of 
k

qiw  will be kept without decreasing to 

facilitate a free movement of particles in the search 

space. Instead of maximum iteration count maxiter , 

another parameter Z is designed to further provide a 

well-balanced mechanism between global and local 

exploration abilities. It is obvious that the value of Z 

is an important factor to control the linearly 

decreasing dynamic parameter framework 

descending from maxw to minw . Suitable selection of 

Z provides a balance between global and local 

explorations, thus requiring less iterations on 

average to find a sufficiently optimal solution. The 

main attractive feature of inertia weight mechanism 

described above is to monitor the weights of a 

particle, which were linearly decreased in general 

applications, to avoid storing too many similar 

particles at the end of the optimization process. The 

significance of control of inertia weight w in the 

PSO algorithm is also retained to increase the 

possibility of occurrence of escaping from local 

optimal solutions. Update the velocities and 

positions of the particles. The velocity of the 

particle vector is updated according to (11). 

 

1
1

2

( )

( )

k k k k
qi qi qi qi qi

k k
i qi

V w V C rand pbest X

C rand gbest X

+ = × + × × − +

× × −
        (11) 

Eq. (12) is applied to update the position of the 

particles. 

.,...2,1;,...,2,1   ;11 NinqVXX p

k

qi

k

qi

k

qi ==+= ++          (12) 
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The steps of NPSO as implemented for linear phase 

FIR LP filter design are as follows: 

Step 1: Initialization: Population (swarm size) of 

particle vectors, nP=120; maximum iteration 

cycles=200; number of filter coefficients (h(n)); 

filter order, N=20;  fixing values of C1, C2 as 2.05; 

minimum and maximum values of filter 

coefficients, hmin=-2,  hmax= 2; number of 

samples=128; 1.0=pδ , 01.0=sδ ; initialize the 

parameter Z; maximum number of iterations and 

compute the inertia weight as per (10); initialization 

of the velocities of all particle vectors.  

Step 2: Generate initial particle vectors of filter 

coefficients (N/2+1) randomly with limits; 

Computation of initial fitness values of the total 

population, nP.  

Step 3: Computation of population based minimum 

error fitness value and computation of the personal 

best solution vectors (pbest), group best solution 

vector (gbest). The error fitness function is an index 

to evaluate the error fitness of the particles. Eq. (6) 

shows the fitness function of the filter design 

problem. 

Step 4: Record and update the best values. The two 

best values are recorded in the searching process. 

Each particle keeps track of its coordinate in the 

solution space that is associated with the best 

solution it has reached so far. This value is recorded 

as pbest. Another best value to be recorded is gbest, 

which is the overall best value obtained so far by 

any particle. 

Step 5: Update the velocities as per (11); updating 

the particles as per (12) and checking against the 

limits of the filter coefficients; finally, computation 

of the updated error fitness values of the particles 

and population based minimum error fitness value. 
Step 6: Check the end condition. If it is reached, the 

algorithm stops, otherwise, repeat steps 3-5. In this 

study, the end condition of NPSO is either the 

convergence of minimum error fitness values is met 

or the maximum number of iterations is reached. 

Finally, hgbest is the particle vector of optimal filter 

coefficients (nvar/2 +1); Form complete (nvar+1) 

coefficients by copying (because the filter has linear 

phase) before getting the optimal frequency 

spectrum.  

 

4 Results and Discussions 
 

4.1 Analysis of Magnitude Response of Low 

pass FIR Filter  
This section presents the simulations performed in 

MATLAB 7.5 for the design of FIR LP filter. The 

filter order (N) is taken as 20, which results in the 

number of coefficients as 21. The sampling 

frequency is taken to be fs = 1Hz. The number of 

frequency samples is 128. Each algorithm is run for 

50 times to obtain its best results. 

Table 2 shows the best chosen parameters for RGA, 

PSO, and NPSO, respectively.  

Table 2. RGA, PSO, NPSO Parameters 

Parameters RGA PSO NPSO 

Population size 120 25 25 

Iteration Cycle 800 350 200 

Crossover rate 1 - - 

Crossover Two Point  - - 

Mutation rate 0.01 - - 

Mutation Gaussian 

 Mutation 

- - 

Selection Roulette - - 

Selection Probability 1/3 - - 

C1 - 2.05 2.05 

C2 - 2.05 2.05 
min

iv  - 0.01 0.01 
max

iv  - 1.0 1.0 

wmax - 1.0 1.0 

wmin - 0.4 0.4 

Z - - 100 

 

The parameters of the filter to be designed using the 

NPSO are: pass band ripple (
pδ ) = 0.1, stop band 

ripple (
sδ ) = 0.01. For the LP filter, pass band 

(normalized) edge frequency (ωp) = 0.45; stop band 

(normalized) edge frequency (ωs) = 0.55; transition 

width=0.1. The filter has order 20. Table 3 shows 

the optimized filter coefficients obtained for FIR LP 

filter, respectively, using the RGA, PSO, and the 

NPSO individually.  
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Fig. 1 dB plots for the FIR LP filter of order 20. 
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Fig. 2 Normalized plots for the FIR LP filter of 

order 20. 
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Fig. 3 Normalized Pass band ripple plots for the FIR 

LP filter of order 20. 

 

Table 3. Optimized coefficients of the FIR LP filter of order 20 

h(N) RGA PSO NPSO 

h(1)=h(21) 0.020644508012550 0.025116793352393 0.028302685047878 

h(2)=h(20) 0.048721413185106 0.047219259300299 0.046719898206481 

h(3)=h(19) 0.005868601564964 0.003546242723169 0.001859568002839 

h(4)=h(18) -0.040966865300227 -0.040094047283599 -0.040498019404735 

h(5)=h(17) -0.000863506780022 -0.000520432067214 0.001013961054997 

h 6)=h(16) 0.059796031265565 0.060907207778672 0.058649649609037 

h(7)=h(15) -0.001408842862974 -0.001759240756773 -0.000384440011894 

h(8)=h(14) -0.103117834700311 -0.103613994946693 -0.105609977954995 

h(9)=h(13) -0.000440644382089 0.000627623037422 0.001355134966428 

h(10)=h(12) 0.317600651261946 0.318119036548684 0.315197573380121 

h(11) 0.500018538901557 0.500018548921576 0.500118548901356 

Table 4. Other comparative results of performance parameters of all algorithms for the FIR LP filter of order 20 

 

 

 

 

 

 

 

 

 

Table 5. Statistical parameters of stop band attenuation for different algorithms for the FIR LP filter 

 

 

Algorithm FIR LP filter of order 20 

Maximum, average 

stop band ripple 

(normalized) 

Transition width 

(normalized) 

Execution Time 

for 

100 cycles (s) 

PM 0.06648, 0.06624 0.1000 - 

RGA 0.04943, 0.02559 0.0950 6.2846 

PSO 0.03954, 0.01901 0.0980 4.8777 

NPSO 0.0279, 0.01862 0.0904 5.3417 

Algorithm FIR LP filter of order 20 

Pass band ripple (normalized) Stop band Attenuation (dB) 

Maximum Mean Variance Standard 

Deviation 

Maximum Mean Variance Standard 

Deviation 

PM 0.067 0.066 0.00000022 0.00047 23.55 23.58 0.00165 0.0406 

RGA 0.114 0.113 0.000001 0.001 26.12 33.066 20.578 4.5363 

PSO 0.123 0.1197 0.00000622 0.0025 28.06 35.602 18.5511 4.3071 

NPSO 0.118 0.12 0.000051 0.0071 31.09 34.884 4.70058 2.168 
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Table 6.  Comparison of NPSO’s Results with Other Reported Results 

Model Parameter 

 Filter type Order Maximum 

stop band 

attenuation (dB) 

Maximum 

pass band 

ripple 

(normalized) 

Maximum 

stop band 

ripple 

(normalized) 

Transition 

width 

Karaboga [11] Low pass 20 NR* >0.08 >0.09 >0.16 

Liu et al. [12] Low pass 20 NR* 0.04 >0.07 >0.06 

Najjarzadeh et al. [16] Low Pass 33 <29dB NR* NR* NR* 

Ababneh et al. [14] Low pass 30 <30dB (Approx.) 0.15 0.031 0.05 

Sarangi et al. [21] Low Pass 20 < 27dB >0.1 >0.06 >0.15 

Bipul Luitel et al. [17] Low Pass 20 <27 dB 0.291 0.270 >0.13 

NPSO Low Pass 20 31.09 0.118 0.0279 0.0904 

NR
*
 means not reported in the referred literature 

 

Table 4 shows the comparative results of 

performance parameters in terms of maximum and 

average stop band ripple (normalized), transition 

width (normalized) for LP filter using PM, RGA, 

PSO, and the NPSO, respectively. It is noticed that 

for a narrower transition width, the NPSO results in 

the best stop band attenuation among all algorithms 

for all types of filters. 

Table 5 shows the comparison of the maximum stop 

band attenuations achieved for LP filters using PM, 

RGA, PSO, NPSO, respectively. Table 5 shows that 

the maximum stop band attenuation achieved for the 

LP filter using the NPSO is 31.09 dB. It is observed 

from Table 5 that the NPSO achieves the best stop 

band attenuation, as compared to those of PM, RGA 

and PSO FIR LP filter of order 20. 

Table 5 also summarizes maximum, mean, variance 

and standard deviation for pass band ripple 

(normalized) and stop band attenuation in dB for the 

designed LP filter using PM, RGA, PSO, and the 

NPSO, respectively. From Table 5, it is observed 

that the maximum pass band ripple (normalized) 

obtained using NPSO is 0.118. Table 6 summarizes 

the comparison of NPSO based results with other 

reported results. NPSO results in 31.09 dB stop 

band attenuation, maximum pass band ripple 

(normalized) = 0.118, maximum stop band ripple 

(normalized) = 0.0279, transition width = 0.0904. 

The simulation results of Sarangi et al. [25], show 

that for the LP filter of order 20, the  maximum stop 

band attenuation (dB) is less than 27dB (approx.), 

maximum pass band ripple (normalized) is more 

than 0.1, maximum stop band ripple  (normalized) is 

more than 0.06, transition width is more than 0.15. 

It is observed from Table 6 that the simulation 

results obtained for filter order 20 using NPSO are 

much better than the other reported results. 

 

Figs. 1-4 show the magnitude response of the LP 

filter using NPSO. The magnitude response in dB is 

plotted in Fig. 1 for low pass filter. The normalized 

magnitude response is shown in Fig. 2. Fig. 3 shows 

the normalized pass band ripple for FIR LP filter of 

order 20. Fig. 4 shows the plots of normalized stop 

band ripple.  

From the above figures and tables, it is observed 

that NPSO results in better magnitude response 

(dB), normalized magnitude response, normalized 

pass band ripple and normalized stop band ripple for 

LP filter, as compared to PM, RGA and PSO 

algorithms. 

 

4.2 convergence profiles of RGA, PSO and 

NPSO 
 In order to compare the algorithms in terms of the 

error fitness value, Figs. 5-7 show the convergences 

of error fitness values obtained when RGA, PSO, 

and the NPSO, respectively, are employed.  

NPSO converges to much lower error fitness value 

as compared to RGA and PSO which yield 

suboptimal higher values of error fitness values. 

RGA converges to the minimum error fitness value 

of 3.109 in 38.1096s; PSO converges to the 

minimum error fitness value of 2.479 in 19.5108s; 

whereas, the NPSO converges to the minimum error 

fitness value of 1.01 in 9.7218s. The above-

mentioned execution times may be verified from 

Figs. 5-7 and Table 4. For the designed FIR LP 

filter, NPSO converges to the least minimum error 

fitness value in finding the optimum filter 

coefficients with lesser number of iteration cycles. 
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Fig. 4 Normalized Stop band ripple plots for the FIR 

LP filter of order 20. 
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Fig. 5 Convergence Profile for RGA in case of 

FIR LP Filter of Order 20. 
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Fig.6 Convergence Profile for conventional PSO 

in case of FIR LP Filter of Order 20. 

 

With a view to the above fact, it may finally be 

inferred that the performance of NPSO is the best 

among all algorithms. All optimization programs are 

run in MATLAB 7.5 version on core (TM) 2 duo 

processor, 3.00 GHz with 2 GB RAM. 
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Fig. 7 Convergence Profile for NPSO in case of 

FIR LP Filter of Order 20. 

 

 

5 Conclusion 
In this paper, a novel particle swarm optimization 

algorithm (NPSO) is applied to the solution of the 

constrained, multi-modal FIR low pass filter design 

problem with optimal filter coefficients. 

Comparison of the results of PM, RGA, PSO, and 

NPSO algorithm has been made. It is revealed that 

NPSO has the ability to converge to the best quality 

near optimal solution and possesses the best 

convergence characteristics in much less execution 

times among the algorithms. The simulation results 

clearly indicate that NPSO demonstrates the best 

performance in terms of magnitude response, 

minimum stop band ripple and maximum stop band 

attenuation with the narrowest transition width. 

Thus, the NPSO may be used as a good optimizer 

for obtaining the optimal filter coefficients in any 

practical digital filter design problem of digital 

signal processing systems.  
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